Recommending Learning Activities in Social Network Using Data Mining Algorithms
نویسنده
چکیده
In this paper, we show how data mining algorithms (e.g. Apriori Algorithm (AP) and Collaborative Filtering (CF)) is useful in New Social Network (NSN-AP-CF). “NSN-AP-CF” processes the clusters based on different learning styles. Next, it analyzes the habits and the interests of the users through mining the frequent episodes by the Apriori algorithm. Finally, it groups dynamically the users based on the collaborative filtering. The participants in this study consisted of 80 university students who were asked to analyze the differences in skill level when using various learning activities. Moreover, 40 students were included in this study in order to examine the effectiveness of NSN-AP-CF. The experiment results proved that the proposed algorithm, which considers the grouping dynamically the users and the discovery of all frequent episodes, generates better precisions compared with the other algorithms (F1 = 0.649).
منابع مشابه
MEFUASN: A Helpful Method to Extract Features using Analyzing Social Network for Fraud Detection
Fraud detection is one of the ways to cope with damages associated with fraudulent activities that have become common due to the rapid development of the Internet and electronic business. There is a need to propose methods to detect fraud accurately and fast. To achieve to accuracy, fraud detection methods need to consider both kind of features, features based on user level and features based o...
متن کاملPerform Three Data Mining Tasks with Crowdsourcing Process
For data mining studies, because of the complexity of doing feature selection process in tasks by hand, we need to send some of labeling to the workers with crowdsourcing activities. The process of outsourcing data mining tasks to users is often handled by software systems without enough knowledge of the age or geography of the users' residence. Uncertainty about the performance of virtual user...
متن کاملRecommending People in Social Networks Using Data Mining
Social networks continue to receive significant attention in academia and business practices. The increasing number of users, along with the amount of implicit and explicit information available, poses challenges in finding, matching and recommending people in social networks. The people recommendations need to be accepted by both parties and presented in a reasonable time period. Existing soci...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Educational Technology & Society
دوره 20 شماره
صفحات -
تاریخ انتشار 2017